Receptor tyrosine phosphatase–dependent cytoskeletal remodeling by the hedgehog-responsive gene MIM/BEG4
نویسندگان
چکیده
During development, dynamic remodeling of the actin cytoskeleton allows the precise placement and morphology of tissues. Morphogens such as Sonic hedgehog (Shh) and local cues such as receptor protein tyrosine phosphatases (RPTPs) mediate this process, but how they regulate the cytoskeleton is poorly understood. We previously identified Basal cell carcinoma-enriched gene 4 (BEG4)/Missing in Metastasis (MIM), a Shh-inducible, Wiskott-Aldrich homology 2 domain-containing protein that potentiates Gli transcription (Callahan, C.A., T. Ofstad, L. Horng, J.K. Wang, H.H. Zhen, P.A. Coulombe, and A.E. Oro. 2004. Genes Dev. 18:2724-2729). Here, we show that endogenous MIM is induced in a patched1-dependent manner and regulates the actin cytoskeleton. MIM functions by bundling F-actin, a process that requires self-association but is independent of G-actin binding. Cytoskeletal remodeling requires an activation domain distinct from sequences required for bundling in vitro. This domain associates with RPTPdelta and, in turn, enhances RPTPdelta membrane localization. MIM-dependent cytoskeletal changes can be inhibited using a soluble RPTPdelta-D2 domain. Our data suggest that the hedgehog-responsive gene MIM cooperates with RPTP to induce cytoskeletal changes.
منابع مشابه
MIM-B, a putative metastasis suppressor protein, binds to actin and to protein tyrosine phosphatase delta.
We have found that MIM-B, a putative metastasis suppressor protein, is implicated in actin cytoskeletal control and interaction with a protein tyrosine phosphatase (PTP). MIM was originally described as a protein whose mRNA was Missing in Metastasis, as it was found not to be present in metastatic bladder carcinoma cell lines [Lee, Y. G., Macoska, J. A., Korenchuk, S. and Pienta, K. J. (2002) N...
متن کاملMIM regulates vertebrate neural tube closure.
Neural tube closure is a critical morphogenetic event that is regulated by dynamic changes in cell shape and behavior. Although previous studies have uncovered a central role for the non-canonical Wnt signaling pathway in neural tube closure, the underlying mechanism remains poorly resolved. Here, we show that the missing in metastasis (MIM; Mtss1) protein, previously identified as a Hedgehog r...
متن کاملPleiotrophin disrupts calcium-dependent homophilic cell-cell adhesion and initiates an epithelial-mesenchymal transition.
Regulation of the levels of tyrosine phosphorylation is essential to maintain the functions of proteins in different signaling pathways and other cellular systems, but how the steady-state levels of tyrosine phosphorylation are coordinated in different cellular systems to initiate complex cellular functions remains a formidable challenge. The receptor protein tyrosine phosphatase (RPTP)beta/zet...
متن کاملSignal-crosstalk between Rho/ROCK and c-Jun NH2-terminal kinase mediates migration of vascular smooth muscle cells stimulated by angiotensin II.
BACKGROUND Rho and its effector Rho-kinase/ROCK mediate cytoskeletal reorganization as well as smooth muscle contraction. Recent studies indicate that Rho and ROCK are critically involved in vascular remodeling. Here, we tested the hypothesis that Rho/ROCK are critically involved in angiotensin II (Ang II)-induced migration of vascular smooth muscle cells (VSMCs) by mediating a specific signal ...
متن کاملSlingshot cofilin phosphatase localization is regulated by Receptor Tyrosine Kinases and regulates cytoskeletal structure in the developing Drosophila eye
Animal development requires that positional information act on the genome to control cell fate and cell shape. The primary determinant of animal cell shape is the cytoskeleton and thus the mechanisms by which extracellular signals influence the cytoskeleton are crucial for morphogenesis. In the developing Drosophila compound eye, localized polymerization of actin functions to constrict the apic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 168 شماره
صفحات -
تاریخ انتشار 2005